All Issue

2021 Vol.17, Issue 4 Preview Page

Original Article

31 December 2021. pp. 839-847
Abstract
Purpose: This study investigates mechanical behavior of functionally graded (FG) carbon nanotube- reinforced composite (CNTRC) plate in flexure. Isogeometric analysis (IGA) method coupled with shear deformable theory of higher-order (HSDT) to analyze the nonlinear bending response is presented. Method: Shear deformable plate theory into which a polynomial shear shape function and the von Karman type geometric nonlinearity are incorporated is used to derive the nonlinear equations of equilibrium for FG-CNTRC plate in bending. The modified Newton-Raphson iteration is adopted to solve the system equations. Result: The dispersion pattern of carbon nanotubes, plate geometric parameter and boundary condition have significant effects on the nonlinear flexural behavior of FG-CNTRC plate. Conclusion: The proposed IGA method coupled with the HSDT can successfully predict the flexural behavior of FG-CNTRC plate.
연구목적: 본 연구에서는 휨을 받는 탄소 나노튜브 보강 기능경사복합재 판의 구조적 거동을 해석하였다. 이를 위해, 등기하해석과 고차전단변형이론을 결합한 수치해석 방법을 이용하였다. 연구방법: 전단보정계수를 사용하지 않고 기하학적 비선형성을 고려할 수 있는 고차전단변형이론을 통하여 휨이 작용하는 탄소 나노튜브 보강 기능경사복합재 판의 비선형 거동방정식을 유도하였으며, 수정된 Newton- Raphson 반복 기법을 사용하여 등기하해석방법에 기반한 시스템 방정식의 해를 구하였다. 연구결과: 탄소 나노튜브의 배치 양상, 폭-두께 비 및 경계조건은 휨을 받는 탄소 나노튜브 보강 기능경사복합재 판의 구조적 거동에 많은 영향을 끼침을 확인하였다. 결론: 제안된 고차전단변형이론에 근거한 등기하해석 방법은 휨을 받는 탄소 나노튜브 보강 기능경사복합재 판의 구조적 거동을 정확하고 효과적으로 해석하는 것을 알 수 있었다.
References
  1. Esawi, A.M.K., Farag, M.M. (2007). "Carbon nanotube reinforced composites: Potential and current challenges." Materials & Design, Vol. 28, pp. 2394-2401. 10.1016/j.matdes.2006.09.022
  2. Fazzolari, F.A. (2018). "Thermoelastic vibration and stability of temperature-dependent carbon nanotube-reinforced composite plates." Composite Structures, Vol. 196, pp. 199-214. 10.1016/j.compstruct.2018.04.026
  3. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y. (2005). "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement." Computer Methods in Applied Mechanics and Engineering, Vol. 194, pp. 4135-4195. 10.1016/j.cma.2004.10.008
  4. Iijima, S. (1991). "Helical microtubules of graphitic carbon." Nature, Vol. 354, pp. 56-58. 10.1038/354056a0
  5. Ke, L.L., Yang, J., Kitipornchai, S. (2010). "Nonlinear free vibration of functionally graded carbon nanotube- reinforced composite beams." Composite Structures, Vol. 92, pp. 676-683. 10.1016/j.compstruct.2009.09.024
  6. Lei, Z.X., Liew, K.M., Yu, J.L. (2013). "Large deflection analysis of functionally graded carbon nanotube- reinforced composite plates by the element-free kp-Ritz method." Computer Methods in Applied Mechanics and Engineering, Vol. 256, pp. 189-199. 10.1016/j.cma.2012.12.007
  7. Lei, Z.X., Zhang, L.W., Liew, K.M., Yu, J.L. (2014). "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method." Composite Structures, Vol. 113, pp. 328-338. 10.1016/j.compstruct.2014.03.035
  8. Mehrabadi, S.J., Aragh, B.S., Khoshkhahesh, V., Taherpour, A. (2012) "Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes." Composites Part B: Engineering, Vol. 43, pp. 2031-2040. 10.1016/j.compositesb.2012.01.067
  9. Mindlin, R.D. (1951) "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates." Journal of Applied Mechanics Transactions of ASME, Vol. 18, pp. 31-38. 10.1115/1.4010217
  10. Reddy, J.N. (2000) "Analysis of functionally graded plates." International Journal for Numerical Methods in Engineering, Vol. 47, pp. 663-684. 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  11. Reissner, E. (1945) "The effect of transverse shear deformation on the bending of elastic plates." Journal of Applied Mechanics Transactions of ASME, Vol. 12, pp. 69-77. 10.1115/1.4009435
  12. Shen, H.S. (2009) "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments." Composite Structures, Vol. 91, pp. 9-19. 10.1016/j.compstruct.2009.04.026
  13. Thostenson, E.T., Ren, Z., Chou, T.W. (2001) "Advances in the science and technology of carbon nanotubes and their composites: A review." Composites Science and Technology, Vol. 61, pp. 1899-1912. 10.1016/S0266-3538(01)00094-X
  14. Zhang, L.W., Song, Z.G., Liew, K.M. (2015) "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method." Composite Structures, Vol. 128, pp. 165-175. 10.1016/j.compstruct.2015.03.011
  15. Zhong, R., Wang, Q., Tang, J., Shuai, C., Qin, B. (2018) "Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates." Composite Structures, Vol. 194, pp. 49-67. 10.1016/j.compstruct.2018.03.104
  16. Zhu, P., Lei, Z.X., Liew, K.M. (2012) "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory." Composite Structures, Vol. 94, pp. 1450-1460. 10.1016/j.compstruct.2011.11.010
Information
  • Publisher :The Korean Society of Disaster Information
  • Publisher(Ko) :한국재난정보학회
  • Journal Title :Journal of the Society of Disaster Information
  • Journal Title(Ko) :한국재난정보학회논문집
  • Volume : 17
  • No :4
  • Pages :839-847