All Issue

2021 Vol.17, Issue 2 Preview Page

Original Article

June 2021. pp. 329-340
Abstract
Purpose: In this paper, using artificial neural network algorithm, the Korean Peninsula was analyzed for drought vulnerable areas by predicting weather data changes. Method: Monthly cumulative precipitation data were utilized for research areas considering the specific nature areas, and weather data prediction through artificial neural network algorithm was carried out using statistical program R. The predicted data were applied to the Standardized Precipitation Index (SPI) to analyze drought vulnerable areas in the Korean Peninsula. Result: In this paper, the correlation coefficient values between real and predicted data are found to be 0.043879 higher on average than the regression results, using artificial neural network algorithms. Conclusion: The results of the research are expected to be used as basic research materials for responding to drought.
연구목적: 본 연구는 인공신경망 라이브러리 기술을 이용하여, 기상 데이터 변화 예측을 통한 한반도 가뭄 취약지역 분석을 목적으로 하였다. 연구방법: 연구지역 중 북한 지역의 다양한 기상데이터의 확보가 힘든 특수성을 고려하여 연구지역의 월별 누적강수량 데이터를 활용하였으며, 통계프로그램 R을 이용하여 인공신경망 알고리즘을 통한 기상데이터 추정을 수행하였다. 연구결과: 본 논문에서 진행한 연구결과, 실제 데이터와 예측 데이터 간의 상관계수 값은 인공신경망 알고리즘을 활용한 결과가 회귀분석 결과보다 평균 0.043879 더 높은 것으로 확인되었다. 결론: 연구의 결과는 가뭄 대응을 위한 재난대응 기초 연구 자료로 활용 가능할 것으로 기대한다.
References
  1. Bae, D.H., Son, K.H., Ahn, J.B., Hong, J.Y., Kim, G.S., Chung, J.S., Jung, U.S., Kim, J.K. (2012). "Development of real-time drought monitoring and prediction system on Korea & East Asia Region." Korean Meteorological Society, Vol. 22, No. 2, pp. 267-277. 10.14191/Atmos.2012.22.2.267
  2. Choi, M., Jennifer, M.J., Martha, C.A., David, D.B. (2013). "Evaluation of drought indices via remotely sensed data with hydrological variables." Journal of Hydrology, Vol. 476, No. 7, pp. 265-273. 10.1016/j.jhydrol.2012.10.042
  3. Dai, A. (2011). "Drought under global warming: A review." Wiley Interdisciplinary Reviews: Climate Change, Vol. 2, No. 1, pp. 45-65. 10.1002/wcc.81
  4. Edwards, D.C., McKee, T.B. (1997). Characteristics of 20th Century Drought in the United States at Multiple Time Series. Master's thesis, Colorado State University, Colorado.
  5. Fatih, E., Galip, A. (2017). "Data classification with deep learning using tensorflow." (UBMK'17) 2nd International Conference on Computer Science and Engineering, pp. 755-758.
  6. Grogan, M. (2017). Neuralnet: Train and Test Neural Networks Using R. https://www.youtube.com/watch?v=Eecg_Nt8LLc.
  7. Guttma, N.B. (1998). "Comparing the palmer drought index and the standardized precipitation index." Journal of the American Water Resources Association, Vol. 34, No. 1, pp. 113-122. 10.1111/j.1752-1688.1998.tb05964.x
  8. Hollinger, S.E., Isard, S.A., Welford, M.R. (1993). "A new soil moisture drought index for predicting crop yields." Environmental Science on Applied Climatology Anaheim CA, pp. 187-190.
  9. Jung, S.H., Lee, K.S., Lee, D.E. (2018). "Prediction of river water level using deep-learning open library." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 1, pp. 1-11. 10.9798/KOSHAM.2018.18.1.1
  10. Kim, J.M. (2015) Neural Network Accelerator Exploiting Both Inter-and Intra-neuron Parallelism. Master Thesis, Sungkyunkwan University.
  11. Korea Environment Institute (2013). A Study on Constructing a Cooperative System for South and North Koreas to Counteract Climate Change on the Korean Peninsula 3.
  12. Korea Meteorological Administration (2011). Annual Climatological Report of North Korea.
  13. Korea Meteorological Administration (2017). Annual Climatological Report.
  14. Korea Meteorological Administration (2020). Korean Climate Change Assessment Report 2020.
  15. Mathier, L., Perreault, L., Bobe, B., Ashkar, F. (1992). "The use of geometric and gamma-related distribution for frequency analysis of water deficit." Stochastic Environmental Research and Rick Assessment, Vol. 6, No. 4, pp. 239-254. 10.1007/BF01581619
  16. Mckee, T.B., Doesken, N.J., Kleist, J. (1993). "The relationship of drought frequency and duration of time scales." Proceedings of the 8th Conference on Applied Climatology, Vol. 17. No. 22, pp. 179-183.
  17. Michael, E.M., Peter, H.G. (2015). "Climate change and California drought in 21st century." Proceedings of the National Academy of Sciences, Vol. 112, No. 13, pp. 3858-3859. 10.1073/pnas.1503667112 25829537 Nam, W.H., Choi, J.Y., Yoo, S.H., Jang, M.W. (2008). "Application of meteorological drought indices for North Korea." Journal of the Korean Society of Agricultural Engineers, Vol. 50, No. 3, pp. 3-15. 10.5389/KSAE.2008.50.3.003
  18. Palmer, W.C. (1965). Meteorological drought. Research paper. 45, U.S. Weather Bureau, USA.
  19. Park, C.E. (2017). "Spatial and temporal aspects of drought in South Korea based on Standardized Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI)." Journal of Agricultural, Life and Environmental Sciences, Vol. 29, No. 3, pp. 202-214. 10.12972/jales.20170019
  20. Shi, H., Chen, J., Wang, K., Niu, J. (2018). "A new method and a new index for identifying socioeconomic drought events under climate change: A case study of the East River basin in China." Science of the Total Environment, March 2018, Vol. 616-617, pp. 363-375. 10.1016/j.scitotenv.2017.10.321 29126053
  21. So, J.M., Shon, K.H., Bae, D.H. (2015). "Development and assessment of drought damage estimation technique using drought characteristic factors." Journal of the Korean Society of Hazard Mitigation, Vol. 15, No. 2, pp. 93-101. 10.9798/KOSHAM.2015.15.2.93
  22. Trenberth, K.E., Overpeck, J.T., Solomon, S. (2004). "Exploring drought and its implications for the future. Eos." Transactions American Geophysical Union, Vol. 85, No. 3, p. 27. 10.1029/2004EO030004
  23. Wilhite, D.A., Glantz, M.H. (1985). "Understanding the drought phenomenon: The role of definition." Water International, Vol. 10, No. 3, pp. 111-120. 10.1080/02508068508686328
  24. WMO (2012). Standardized Precipitation Index User Guide. WMO-No. 1090.
  25. Yoo, J.Y., Choi, M.H., Kim, T.W. (2010). "Spatial analysis of drought characteristics in Korea using cluster analysis." Journal of Korea Water Resources Association, Vol. 43, No. 1, pp. 15-24. 10.3741/JKWRA.2010.43.1.15
  26. Yoon, H.S., Jo, J.M., Choi, H.J., Hwang, J.S. (2015). Disaster Risk Assessment Theory. Moonundang Press.
Information
  • Publisher :The Korean Society of Disaster Information
  • Publisher(Ko) :한국재난정보학회
  • Journal Title :Journal of the Society of Disaster Information
  • Journal Title(Ko) :한국재난정보학회논문집
  • Volume : 17
  • No :2
  • Pages :329-340