Original Article
Abstract
References
Information
Purpose: This study aims to improve the recognition rate of Auto People Counting (APC) in accurately identifying and providing information on remaining evacuees in disaster-vulnerable facilities such as nursing homes to firefighting and other response agencies in the event of a disaster. Methods: In this study, a baseline model was established using CNN (Convolutional Neural Network) models to improve the algorithm for recognizing images of incoming and outgoing individuals through cameras installed in actual disaster-vulnerable facilities operating APC systems. Various algorithms were analyzed, and the top seven candidates were selected. The research was conducted by utilizing transfer learning models to select the optimal algorithm with the best performance. Results: Experiment results confirmed the precision and recall of Densenet201 and Resnet152v2 models, which exhibited the best performance in terms of time and accuracy. It was observed that both models demonstrated 100% accuracy for all labels, with Densenet201 model showing superior performance. Conclusion: The optimal algorithm applicable to APC among various artificial intelligence algorithms was selected. Further research on algorithm analysis and learning is required to accurately identify the incoming and outgoing individuals in disaster-vulnerable facilities in various disaster situations such as emergencies in the future.
연구목적: 본 연구는 요양병원 등 재난취약시설에 재난이 발생할 경우 잔류한 요구조자를 정확하게 파악하여 소방 등 대응기관에 제공하는 APC(Auto People Counting)의 인식률 개선에 목적이 있다. 연구방법: 본 연구에서는 실제 재난취약시설에 설치되어 운영 중인 APC를 대상으로 카메라를 통해 출입 인원의 이미지를 인식하는 알고리즘을 개선하기 위해 CNN모델을 활용하여 베이스라인 모델링을 하였다. 다양한 알고리즘의 성능을 분석하여 상위 7개의 후보군을 선정하고 전이학습 모델을 활용하여 성능이 가장 우수한 최적의 알고리즘을 선정하는 방법으로 연구를 수행하였다. 연구결과: 실험결과 시간과 성능이 가장 좋은 Densenet201, Resnet152v2 모델의 정밀도와 재현율을 확인한 결과 모든 라벨에 대해서 정확도 100%를 나타내는 것을 확인할 수 있었다. 이 중 Densenet201 모델이 더 높은 성능을 보여주었다. 결론: 다양한 인공지능 알고리즘 중 APC에 적용할 수 있는 최적의 알고리즘을 선정하였다. 향후 연무 등 다양한 재난상황에서 재난취약시설 내 출입인원을 정확하게 파악할 수 있도록 알고리즘 분석 및 학습에 대한 추가 연구가 요구된다.
- He, K., Zhang, X., Ren, S., Sun, J. (2015). "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770-778. 10.1109/CVPR.2016.90 26180094
- Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q. (2017). "Densely connected convolutional networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 4700-4708. 10.1109/CVPR.2017.243
- Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012). "ImageNet classification with deep convolutional neural networks." Communications of the ACM, Vol. 60 No. 6, pp. 84-90. 10.1145/3065386
- Kwon, H., Youn, C.J., Kim, H.D. (2021). "Necessity of applying lifesaving smart technology for vulnerable class in nursing facilities: Focus on introduction of RFID-based positioning system and 3D scanning technology." Fire Science and Engineering, Vol. 35, No. 2, pp. 143-154. 10.7731/KIFSE.f8fccc2d
- Lee, J.R., Lee, D.W., Jeong, S.H., Jeong, S. (2023). "Comparative study on artificial in intelligence model performance between image and video recognition in the fire detection area." Journal of the Society of Disaster Information, Vol. 19, No. 4, pp. 968-975.
- Simonyan, K., Zisserman, A. (2014). "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556.
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2014). "Going deeper with convolutions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 1-9. 10.1109/CVPR.2015.7298594
- Tan, M., Le, Q. (2019). "EfficientNet: rethinking model scaling for convolutional neural networks." Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, USA, Vol. 97, pp. 6105-6114.
- Publisher :The Korean Society of Disaster Information
- Publisher(Ko) :한국재난정보학회
- Journal Title :Journal of the Society of Disaster Information
- Journal Title(Ko) :한국재난정보학회논문집
- Volume : 20
- No :1
- Pages :199-205
- DOI :https://doi.org/10.15683/kosdi.2024.3.31.199