All Issue

2021 Vol.17, Issue 4 Preview Page

Original Article

31 December 2021.
Abstract
Purpose: In this study, earthquake-induced landslide risk assessment was conducted to provide basic data for efficient and preemptive damage prevention by selecting the erosion control work before the earthquake and the prediction and restoration priorities of the damaged area after the earthquake. Method: The study analyzed the previous studies abroad to examine the evaluation methodology and to derive the evaluation factors, and examine the utilization of the landslide hazard map currently used in Korea. In addition, the earthquake-induced landslide hazard map was also established on a pilot basis based on the fault zone and epicenter of Pohang using seismic attenuation. Result: The earthquake-induced landslide risk assessment study showed that China ranked 44%, Italy 16%, the U.S. 15%, Japan 10%, and Taiwan 8%. As for the evaluation method, the statistical model was the most common at 59%, and the physical model was found at 23%. The factors frequently used in the statistical model were altitude, distance from the fault, gradient, slope aspect, country rock, and topographic curvature. Since Korea's landslide hazard map reflects topography, geology, and forest floor conditions, it has been shown that it is reasonable to evaluate the risk of earthquake-induced landslides using it. As a result of evaluating the risk of landslides based on the fault zone and epicenter in the Pohang area, the risk grade was changed to reflect the impact of the earthquake. Conclusion: It is effective to use the landslide hazard map to evaluate the risk of earthquake- induced landslides at the regional scale. The risk map based on the fault zone is effective when used in the selection of a target site for preventive erosion control work to prevent damage from earthquake-induced landslides. In addition, the risk map based on the epicenter can be used for efficient follow-up management in order to prioritize damage prevention measures, such as to investigate the current status of landslide damage after an earthquake, or to restore the damaged area.
연구목적: 지진에 의한 산사태 위험도 평가를 통하여 지진발생 전에는 산사태 예방사업, 지진발생 후에는 피해지 예측 및 복구 우선순위 선정으로 지진유발 산사태 피해저감을 효율적·선제적으로 하기 위한 기초자료를 제공하고자 수행하였다. 연구방법: 국외 선행연구를 분석하여 평가 방법론 검토와 평가 인자를 도출하고 국내 산사태 위험지도 활용성을 검토하였다. 또한 지진동 감쇠식을 이용하여 포항지역의 단층대 및 진앙지 기준으로 지진에 의한 산사태 위험지도를 시범 구축하였다. 연구결과: 지진에 의한 산사태 위험도 평가 연구는 중국이 전체의 44%, 이탈리아 16%, 미국 15%, 일본 10%, 대만 8% 순으로 나타났다. 평가 방법론으로 통계적 모형이 59%로 가장 많았고, 물리적 모형이 23%로 나타났다. 통계적 모형에 많이 사용된 인자는 고도, 단층대와의 거리, 경사도, 사면방향, 모암, 지형곡률로 나타났다. 현재 국내의 산사태 위험지도는 지형·지질·임상이 반영되는데 이를 활용한 지진에 의한 산사태 위험도 평가는 합리적인 것으로 나타났다. 포항지역에 단층대 및 진앙지 기준으로 산사태 위험도를 평가한 결과 기존의 낮은 등급이 높은 등급으로 변화하는 등 지진의 영향이 고려되었다. 결론: 광역 단위의 지진유발 산사태 위험도 평가를 위해서는 산사태 위험지도를 활용하는 것이 효율적이다. 단층대 기준의 위험지도는 지진에 의한 산사태 피해방지를 위한 예방사방사업 대상지 선정에 활용하고, 진앙지 기준의 위험지도는 지진이 발생한 이후 산사태 피해 현황을 조사하거나 피해지 복구 등 피해방지 대책 우선순위 선정의 효율적 사후관리에 활용할 수 있다.
References
  1. Atkinson, G.M., Boore, D.M. (1995). "Ground-motion relations for eastern North America." Bulletin of the Seismological Society of America, Vol. 85, No. 1, pp. 17-30. 10.1785/BSSA0850010017
  2. Chae, B.G., Choi, J.H, Jeong, H.K. (2016). "A feasibility study of a rainfall triggering index model to warn landslides in Korea." The Journal of Engineering Geology, Vol. 26, No. 2, pp. 325-250. 10.9720/kseg.2016.2.235
  3. Facciorusso, J., Madiai, C., Vannucchi, G. (2012). "A grade-3 method of zonation for seismic slope stability: An Italian case study." Soil Dynamics and Earthquake Engineering, Vol. 36, pp. 96-110. 10.1016/j.soildyn.2012.01.006
  4. Guo, D., Hamada, M. (2013). "Qualitative and quantitative analysis on landslide influential factors during Wenchuan earthquake: A case study in Wenchuan county." Engineering Geology, Vol. 152, pp. 202-209. 10.1016/j.enggeo.2012.10.012
  5. Harp, E.L., Keefer, D.K., Sato, H.P., Yagi, H. (2011). "Landslide inventories: The essential part of seismic landslide hazard analyses." Engineering Geology, Vol. 122, pp. 9-21. 10.1016/j.enggeo.2010.06.013
  6. Huang, R., Pei, X., Fan, X., Zhang, W., Li, S., Li, B. (2012). "The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China." Landslides, Vol. 9, pp. 131-142. 10.1007/s10346-011-0276-6
  7. ISSMGE-TC4 (1999). Manual for Zonation on Seismic Geotechnical Hazard. International society for soil mechanics and geotechnical engineering, Japan.
  8. Jeon, S.K., Kim, D.M., Choi, W.I., Choi, E.H. (2014). "Prediction of the landslide and effect on heritage located in mountain induced earthquake." The Journal of Korean Society of Hazard Mitigation, Vol. 14, No. 2, pp. 139-148. 10.9798/KOSHAM.2014.14.2.139
  9. Jibson, R.W., Harp, E.L., Michael, J.A. (1998). A method for producing digital probabilistic seismic landslide hazard maps: An example from the Los Angeles, California, area. US Geological Survey, Denver, USA. 10.3133/ofr98113
  10. Jibson, R.W., Harp, E.L., Michael, J.A. (2000). "A method for producing digital probabilistic seismic landslide hazard maps." Engineering Geology, Vol. 58, No. 3-4, pp. 271-289. 10.1016/S0013-7952(00)00039-9
  11. Jibson, R.W., Michael, J.A. (2009). Maps showing seismic landslide hazards in Anchorage, Alaska. US Geological Survey, Denver, USA. 10.3133/sim3077
  12. Jo, B.G. (2002). Earthquake Vibration Damping Characteristics in the Korean Peninsula. Korea Institute of Nuclear Safety, Daejeon, Korea.
  13. Kamp, U., Growley, B.J., Khattak, G.A., Owen, L.A. (2008). "GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region." Geomorphology, Vol. 101, No. 4, pp. 631-642. 10.1016/j.geomorph.2008.03.003
  14. Kang, M.J., Kim, K.D., Seo, J.P., Woo, C.S., Lee, C.W. (2020). "Analysis of the occurrence characteristics of earthquake-induced landslide through a media report: Focus on international cases reported in domestic media during the 10 years(2009-2018)." Journal of the Korean Society of Disaster Information, Vol. 16, No. 3, pp. 440-448.
  15. Kawabata, D., Bandibas, J. (2009). "Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network(ANN)." Geomorphology, Vol. 113, No. 1-2, pp. 97-109. 10.1016/j.geomorph.2009.06.006
  16. Kim, H.L., Kim, S.K., Choi, K.R. (2010). "Application of the JMA instrumental intensity in Korea." Earthquake Engineering Society of Korea, Vol. 14, No. 2, pp. 49-56. 10.5000/EESK.2010.14.2.049
  17. Kim, M.J., Kyung, J.B. (2015). "An analysis of the sensitivity of input parameters for the seismic hazard analysis in the Korean Peninsula." The Korean Earth Science Society, Vol. 36, No. 4, pp. 351-359. 10.5467/JKESS.2015.36.4.351
  18. Korea Forest Service (2018). The 6th Basic Forest Plan. Daejeon, Korea.
  19. KMA (2006). A Study on the Configuration of the Accelation Observation Network and Optimization of Instrument Magnitude. Korea Meteorological Administration, Seoul, Korea.
  20. Lee, C.T. (2014). "Statistical seismic landslide hazard analysis: An example from Taiwan." Engineering Geology, Vol. 182, pp. 201-212. 10.1016/j.enggeo.2014.07.023
  21. Lee, C.T., Huang, C.C., Lee, J.F., Pan, K.L., Lin, M.L., Dong, J.J. (2008). "Statistical approach to earthquake-induced landslide susceptibility." Engineering Geology, Vol. 100, pp. 43-58. 10.1016/j.enggeo.2008.03.004
  22. Lee, C.W., Kim, D.Y., Woo, C.S., Kim, Y.-S., Seo, J.P., Kwon, H.J. (2015). "Construction and operation of the national landslide forecast system using soil water index in Republic of Korea." The Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 6, pp. 213-221. 10.9798/KOSHAM.2015.15.6.213
  23. Lee, G.H., An, H.U., Yeon, M.H., Seo, J.P., Lee, C.W. (2020). "Review of earthquake-induced landslide modeling and scenario-based aplication." Korean Journal of Agricultural Science, Vol. 47, No. 4, pp. 963-978.
  24. Lee, J.Y., Han, J.T. (2015). "Analysis of landslide hazard map during earthquake with various degrees of saturation and cohesion values." Journal of the Korean Society of Civil Engineers, Vol. 35, No. 3, pp. 599-606. 10.12652/Ksce.2015.35.3.0599
  25. Lee, J.Y., Han, J.T., Baek, Y., Park, D.H., Lee, J.H., Park, I.J. (2014). "Development of prediction method considering geometrical amplification characteristics of slope 2: Construction of landslide hazard map during earthquakes in Seoul." The Journal of Korean Society of Hazard Mitigation, Vol. 14, No. 5, pp. 85-92. 10.9798/KOSHAM.2014.14.5.85
  26. Lee, S.I., Seo, J.I., Kim, J.H., Ryu, D.S., Seo, J.P., Kim, D.Y., Lee, C.W. (2017). "International research trend on mountainous sediment-related disasters induced by earthquakes." Journal of Korean Forest Society, Vol. 106, No. 4, pp. 431-440.
  27. Ma, C., Wang, Y., Hu, K., Du, C., Yang, W. (2017). "Rainfall intensity-duration threshold and erosion competence of debris flows in four areas affected by the 2008 Wenchuan earthquake." Geomorphology, Vol. 282, pp. 85-95. 10.1016/j.geomorph.2017.01.012
  28. MOLIT (2016). Slope Design Standard for Constructruction Work. Ministry of Land, Infrastructure and Transport, Sejong, Korea.
  29. Murphy, J.R., O′brien, L.J. (1977). "The correlation of peak ground accelation amplitude with seismic intensity and other physical parameters." Bulletin of the Seismological Society of America, Vol. 67, No. 3, pp. 877-915. 10.1785/BSSA0670030877
  30. Newmark, N.M. (1965). "Effects of earthquakes on dams and embankments." Geotechnique, Vol. 15, No. 2, pp. 139-160. 10.1680/geot.1965.15.2.139
  31. Nonomura, A., Hasegawa, S., Kageura, R., Kawato, K., Chiba, T., Onoda, S., Dahal, R.K. (2016). "A method for regionally mapping gravitationally deformed and loosened slopes using helicopter-borne electromagnetic resistivity data." Natural hazards, Vol. 81, pp. 123-144. 10.1007/s11069-015-2068-0
  32. Paoletti, V., Tarallo, D., Matano, F., Rapolla, A. (2013). "Level-2 susceptibility zoning on seismic-induced landslides: An application to Sannio and Irpinia areas, Southern Italy." Physics and Chemistry of the Earth, Parts A/B/C, Vol. 63, pp.147-159. 10.1016/j.pce.2013.02.002
  33. Seo, J.I., Lee, S.I., Kweon, H.K., Chun, K.W., Kim, S.W., Jun, K.W., Kim, J.H., Lee, C.W. (2018). "Future research direction in response to mountainous sediment-related disasters induced by earthquakes in South Korea." Crisisonomy, Vol. 14, No. 3, pp. 119-138. 10.14251/crisisonomy.2018.14.3.119
  34. Sharifi-Mood, M., Olsen, M.J., Gillins, D.T., Mahalingam, R. (2017). "Performance-based, seismically-induced landslide hazard mapping of Western Oregon." Soil Dynamics and Earthquake Engineering, Vol. 103, pp. 38-54. 10.1016/j.soildyn.2017.09.012
  35. Shinoda, M., Miyata, Y. (2017). "Regional landslide susceptibility following the mid Niigata prefecture earthquake in 2004 with newmark's sliding block analysis." Landslides, Vol. 14, No. 6, pp. 1887-1899. 10.1007/s10346-017-0833-8
  36. Vessia, G., Pisano, L., Tromba, G., Parise, M. (2017). "Seismically induced slope instability maps validated at an urban scale by site numerical simulations." Bulletin of Engineering Geology and the Environment, Vol. 76, No. 2, pp. 457-476. 10.1007/s10064-016-0940-0
  37. Wang, T., Liu, J., Shi, J., Wu, S. (2017). "The influence of DEM resolution on seismic landslide hazard assessment based upon the Newmark displacement method: A case study in the loess area of Tianshui, China." Environmental Earth Sciences, Vol. 76, No. 17, pp. 604. 10.1007/s12665-017-6944-7
  38. Woo, C.S., Kwon, H.J., Lee, C.W., Kim, K.H. (2014). "Landslide hazard prediction map based on logistic regression model for applying in the whole country of South Korea." The Journal of Korean Society of Hazard Mitigation, Vol. 14, No. 6, pp. 117-123. 10.9798/KOSHAM.2014.14.6.117
  39. Xu, C., Dai, F., Xu, X., Lee, Y.H. (2012a). "GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China." Geomorphology, Vol. 145, pp. 70-80. 10.1016/j.geomorph.2011.12.040
  40. Xu, C., Xu, X., Dai, F., Saraf, A.K. (2012b). "Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China." Computers & Geosciences, Vol. 46, pp. 317-329. 10.1016/j.cageo.2012.01.002
  41. Xu, C., Xu, X., Yao, X., Dai, F. (2014). "Three(nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis." Landslides, Vol. 11, No. 3, pp. 441-461. 10.1007/s10346-013-0404-6
  42. Yoshimatsu, H., Abe, S. (2006). "A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process(AHP) method." Landslides, Vol. 3, No. 2, pp. 149-158. 10.1007/s10346-005-0031-y
Information
  • Publisher :The Korean Society of Disaster Information
  • Publisher(Ko) :한국재난정보학회
  • Journal Title :Journal of the Society of Disaster Information
  • Journal Title(Ko) :한국재난정보학회논문집
  • Volume : 17
  • No :4