All Issue

2023 Vol.19, Issue 4 Preview Page

Original Article

31 December 2023. pp. 976-983
Purpose: The dynamic behavior of a bridge structure under seismic loading depends on many uncertainties, such as the nature of the seismic waves and the material and geometric properties. However, not all uncertainties have a significant impact on the dynamic behavior of a bridge structure. Since probabilistic seismic performance evaluation considering even low-impact uncertainties is computationally expensive, the uncertainties should be identified by considering their impact on the dynamic behavior of the bridge. Therefore, in this study, a global sensitivity analysis was performed to identify the main parameters affecting the dynamic behavior of bridges with I-curved girders. Method: Considering the uncertainty of the earthquake and the material and geometric uncertainty of the curved bridge, a finite element analysis was performed, and a surrogate model was developed based on the analysis results. The surrogate model was evaluated using performance metrics such as coefficient of determination, and finally, a global sensitivity analysis based on the surrogate model was performed. Result: The uncertainty factors that have the greatest influence on the stress response of the I-curved girder under seismic loading are the peak ground acceleration (PGA), the height of the bridge (h), and the yield stress of the steel (fy). The main effect sensitivity indices of PGA, h, and fy were found to be 0.7096, 0.0839, and 0.0352, respectively, and the total sensitivity indices were found to be 0.9459, 0.1297, and 0.0678, respectively. Conclusion: The stress response of the I-shaped curved girder is dominated by the uncertainty of the input motions and is strongly influenced by the interaction effect between each uncertainty factor. Therefore, additional sensitivity analysis of the uncertainty of the input motions, such as the number of input motions and the intensity measure(IM), and a global sensitivity analysis considering the structural uncertainty, such as the number and curvature of the curved girders, are required.
연구목적: 지진하중을 받는 교량 구조물의 동적 거동은 지진파의 특성 혹은 재료 및 기하학적 특성과 같은 많은 불확실성에 영향을 받는다. 하지만 모든 불확실성 인자가 교량 구조물의 동적 거동에 중요한 영향을 미치진 않는다. 영향성이 낮은 불확실성 인자까지 고려한 확률론적 내진성능 평가는 많은 계산비용이 요구되기 때문에 교량의 동적 거동에 미치는 영향을 고려하여 불확실성 인자는 식별되어야 한다. 따라서 본 연구는 I형 곡선 거더를 갖는 단경간 교량의 동적 거동에 영향을 미치는 주요 매개변수를 식별하기 위해 전역민감도 분석을 수행하였다. 연구방법: 지진파의 불확실성과 곡선 교량의 재료 및 기하학적 불확실성을 고려하여 유한요소 해석을 수행하였으며 해석결과를 기반으로 대리모델을 작성하였다. 결정계수와 같은 성능평가지료를 이용하여 대리모델을 평가하였으며 최종적으로 대리모델 기반의 전역 민감도 분석을 수행하였다. 연구결과: 지진하중을 받는 I형 곡선 거더의 응력응답에 가장 큰 영향을 미치는 불확실성 인자는 최대지반가속도(PGA), 교각의 높이(h), 강재의 항복응력(fy) 순으로 나타났다. PGA, h, fy의 주효과 민감도 지수는 각각 0.7096, 0.0839, 0.0352로 나타났으며 총 민감도 지수는 각각 0.9459, 0.1297, 0.0678로 나타났다. 결론: I형 곡선 거더의 응력응답은 입력운동의 불확실성에 대한 영향성이 지배적이며 각 불확실성 인자 사이의 교호작용에 큰 영향을 받는다. 따라서 입력운동의 개수 및 intensity measure과 같은 입력운동의 불확실성에 대한 추가적인 민감도 분석과 곡선거더의 개수 및 곡률과 같은 구조적 불확실성까지 고려한 총 민감도 분석은 필요하다.
  1. ABAQUS (2021). ABAQUS/CAE User's Manual 2021; ABAQUS: Pawtucket, RI, USA.
  2. ACI Committe 318 (2007). ACI 318M-08: Building Code Requirements for Structural Concrete and Commentary, Farmington Hills, MI, USA.
  3. Bavaghar, Y., Bayat, M. (2017). "Seismic fragility curves for highly skewed highway bridges." Journal of Vibroengineering, Vol. 19, No. 4, pp. 2749-2758. 10.21595/jve.2017.18340
  4. Davidson, J.S., Abdalla, R.S., Madhavan, M. (2002). Design and Construction of Modern curved Bridges. University Transportation Center for Alabama, Report No. FHWA/CA/OR, The University of Alabama, Alabama, USA.
  5. Jeon, J., Ju, B.S., Son, H. (2018). "Seismic fragility analysis of curved beam with I-shape section." Journal of the Korea Society of Disaster Information, Vol. 14, No. 3, pp. 379-386.
  6. Jeon, J., Ju, B.S., Son, H. (2018). "Seismic fragility of I-shape curved steel girder bridge using machine learning method." Journal of the Korea Society of Disaster Information, Vol. 18, No. 4, pp. 899-907.
  7. Jeon, J.S., DesRoches, R., Kim, T., Choi, E. (2016). "Geometric parameters affecting seismic fragilities of curved multi-frame concrete box-girder bridges with integral abutments." Engineering Structures, Vol. 122, pp. 121-143. 10.1016/j.engstruct.2016.04.037
  8. Jeon, J.S., Mangalathu, S., Song, J., Desroches, R. (2019). "Parameterized seismic fragility curves for curved multi-frame concrete box-girder bridges using bayesian parameter estimation." Journal of Earthquake Engineering, Vol. 23, No. 6, pp. 954-979. 10.1080/13632469.2017.1342291
  9. Kim, J.R., Kim, S.B., Park, Y.H., Jung, W.G. (2000). "A statistical study on the mechanical properties and chemical components of rolled steels for welded structure, SM490." Journal of the Architectural Institute of Korea Structure & Construction, Vol. 16, No. 11, pp. 3-10.
  10. Kim, J.S., Shin, J.H. (2009). "Mechanical properties of concrete with statistical variations." Journal of the Korea Concrete Institute, Vol. 21, No. 6. pp. 789-796. 10.4334/JKCI.2009.21.6.789
  11. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D. (2008). Global Sensitivity Analysis: The Primer. John Wiley & Sons. New Jersey, USA. 10.1002/9780470725184
  12. Seo, J., Park, H. (2017). "Probabilistic seismic restoration cost estimation for transportation infrastructure portfolios with an emphasis on curved steel I-girder bridges." Structural Safety, Vol. 65, pp. 27-34. 10.1016/j.strusafe.2016.12.002
  13. Sobol, I.M. (1993). "Sensitivity estimates for nonlinear mathematical models." Mathematical Modelling and Computational Experiments, Vol. 1, pp. 407-414.
  14. Tian, W. (2013). "A review of sensitivity analysis methods in building energy analysis." Renewable and Sustainable Energy Reviews, Vol. 20, pp. 411-419. 10.1016/j.rser.2012.12.014
  15. Wang, W., Li, Z., Shafieezadeh, A. (2021). "Seismic response prediction and variable importance analysis of extended pile-shaft-supported bridges against lateral spreading: Exploring optimized machine learning models." Engineering Structures, Vol. 236, 112142. 10.1016/j.engstruct.2021.112142
  16. Xiao, S., Lu, Z. (2017). "Structural reliability sensitivity analysis based on classification of model output." Aerospace Science and Technology, Vol. 71, pp. 52-61. 10.1016/j.ast.2017.09.009
  17. Yoo, Y.S., Yi, D.H., Kim, S.S., Park, C.S. (2020). "Rational bulding energy assessment using global sensitivity analysis." Jornal of the Architectural Institute of Korea Structure & Construction, Vol. 36, No. 5, pp. 177-185.
  18. Zhang, X.Y., Trame, M.N., Lesko, T.J., Schmidt, S. (2015). "Sobol sensitivity analysis: A tool to guide the development and evaluation of systems pharmacology models." CPT: Pharmacometrics & Systems Pharmacolohy, Vol. 4, No. 2, pp. 69-79. 10.1002/psp4.6 27548289 PMC5006244
  • Publisher :The Korean Society of Disaster Information
  • Publisher(Ko) :한국재난정보학회
  • Journal Title :Journal of the Society of Disaster Information
  • Journal Title(Ko) :한국재난정보학회논문집
  • Volume : 19
  • No :4
  • Pages :976-983