All Issue

2019 Vol.15, Issue 2 Preview Page

Research Article

30 June 2019. pp. 186-197
Abstract
Purpose: This study intends to develop a nonlinear cyclic plasticity damage model in the framework of finite element formulation, which is capable of taking large deformation effects into account, in order to accurately predict the hysteretic behavior of stainless steel structures. Method: The new cyclic constitutive equations that utilize the combined isotropic-kinematic hardening rule for plastic deformation is incorporated into the damage mechanic model in conjunction with the large strain formulation. The damage growth law is based on the experimental observations that the evolution of microvoids yields nonlinear damage accumulation with plastic deformation. The damage model parameters and the procedure for their identification are presented. Results and Conclusion: The proposed nonlinear damage model has been verified by simulating uniaxial strain-controlled monotonic and cyclic loading tests, and successfully applied to a thin-walled stainless steel pipe subjected to constant and alternating strain-controlled cyclic loadings.
연구목적: 본 연구에서는 대변형 효과를 구현할 수 있는 유한요소 해석기법을 기반으로 반복하중에 의한 스테인리스강의 이력거동을 정확하게 평가할 수 있는 비선형 반복소성 손상모델을 개발하였다. 연구방법: 개선된 운동경화 모델과 등방경화 법칙을 연계하여 반복하중 하에서의 재료의 거동을 모사하는데 필요한 반복소성 모델을 개발하였으며, 이를 비선형 손상모델과 결합하였다. 연구결과 및 결론: 제안된 비선형 손상모델을 검증하기 위하여 변형률 제어 단조 및 반복하중 시험을 모사하였으며, 이를 통한 해석결과를 시험결과와 비교하였다. 비교 결과, 본 연구에서 제안한 비선형 손상모델은 스테인리스강의 반복하중 하에서의 이력거동을 정확하게 모사할 수 있음을 확인하였다.
References
  1. Aboutalebi, F.H., Farzin, M., Poursina, M. (2011). “Numerical simulation and experimental validation of a ductile damage model for DIN 1623 St14 steel.” International Journal of Advanced Manufacturing Technology, Vol. 53, pp. 157-165. 10.1007/s00170-010-2831-z
  2. Bataille, J., Kestin, J. (1979). “Irreversible process and physical interpretation of rational thermodynamics.” Journal of Non-Equilibrium Thermodynamics, Vol. 4, pp. 229-258. 10.1515/jnet.1979.4.4.229
  3. Bathe, K.J., Ramm, E., Wilson, E.L. (1975). “Finite element formulations for large formation dynamic analysis.” International Journal of Numerical Methods in Engineering, Vol. 9, pp. 353-386. 10.1002/nme.1620090207
  4. Burlet, H., Cailletaud, G. (1986). “Numerical techniques for cyclic plasticity at variable temperature.” Engineering Computations, Vol. 3, pp. 143-153. 10.1108/eb023652
  5. Do, N.V.V (2013). Finite element modeling of fatigue damage and its evolution in steel structures. Ph.D. Thesis, Chung-Ang University, Korea.
  6. EN 1993-1-4 (2006). Eurocode 3: design of steel structures-Part 1.4: General rules-supplementary rules for stainless steel, CEN.
  7. Gardner, L. (2005). “The use of stainless steel in structures.” Progress in Structural Engineering and Materials, Vol. 7, pp. 45-55. 10.1002/pse.190
  8. Gedge, G. (2008). “Structural uses of stainless steel. buildings and civil engineering.” Journal of Constructional Steel Research, Vol. 64, pp. 1194-1198. 10.1016/j.jcsr.2008.05.006
  9. Kachanov, L.M (1986). Introduction to continuum Damage Mechanics. Martinus Nijhoff, Dordrecht. 10.1007/978-94-017-1957-5
  10. Kang, G.Z., Gao, Q., Yang, X. (2002). “A visco-plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature.” Mechanics of Materials, Vol. 34, pp. 521-531. 10.1016/S0167-6636(02)00153-9
  11. Le Roy, G., Embury, J.D., Edward, G., Ashby, M.F. (1981). “A model for ductile fracture based on nucleation and growth of voids.” Acta Metallurgica, Vol. 29, pp. 1509-1522. 10.1016/0001-6160(81)90185-1
  12. Lee, C.H., Chang, K.H., Park, K.T., Shin, H.S., Kim, T. (2013). “Bending resistance of girth-welded stainless steel circular hollow sections.” Thin-Walled Structures, Vol. 73, pp. 174-184. 10.1016/j.tws.2013.08.002
  13. Lee, C.H., Chang, K.H., Park, K.T., Shin, H.S., Lee, M. (2014). “Compressive strength of girth-welded stainless steel circular hollow section members: Stub columns.” Journal of Constructional Steel Research, Vol. 92, pp. 15-24. 10.1016/j.jcsr.2013.09.004
  14. Lemaitre, J. (1985). “A Continuous damage mechanics model for ductile fracture.” Journal of Engineering Materials and Technology, Vol. 107, pp. 83-89. 10.1115/1.3225775
Information
  • Publisher :The Korean Society of Disaster Information
  • Publisher(Ko) :한국재난정보학회
  • Journal Title :Journal of the Society of Disaster Information
  • Journal Title(Ko) :한국재난정보학회논문집
  • Volume : 15
  • No :2
  • Pages :186-197